
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PROGRAM SYNTHESIS BENCHMARK FOR VISUAL
PROGRAMMING IN XLOGOONLINE ENVIRONMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language and multimodal models have shown remarkable success on vari-
ous benchmarks focused on specific skills such as general-purpose programming,
natural language understanding, math word problem-solving, and visual question
answering. However, it is unclear how well these models perform on tasks that
require a combination of these skills. In this paper, we curate a novel program
synthesis benchmark based on the real-world tasks in the XLogoOnline visual
programming environment. Each task requires a combination of different skills
such as spatial planning, basic programming, and logical reasoning. Our evaluation
shows that current state-of-the-art models like GPT-4V and Llama3-70B struggle to
solve these tasks, achieving only 20% and 2.35% success rates, respectively. Next,
we develop a fine-tuning pipeline to boost the performance of models by leveraging
a large-scale synthetic training dataset with over 80, 000 tasks. Moreover, we
showcase how emulator-driven feedback can be used to design a curriculum over
training data distribution, through which a fine-tuned Llama3-8B drastically out-
performs GPT-4V and Llama3-70B models. Finally, we provide an in-depth failure
analysis to understand the limitations of different models. We will publicly release
the benchmark for future research on program synthesis in visual programming.

1 INTRODUCTION

In recent years, large models have shown remarkable performance in various domains, such as general-
purpose programming and visual question answering (Bubeck et al., 2023). For instance, in program-
ming, numerous tools and models use large language models (LLMs) for code generation (Chen
et al., 2021; GitHub, 2021) and programming feedback generation (Phung et al., 2024; 2023a;b),
revolutionizing how programmers write code and how teachers instruct programming (Peng et al.,
2023; Denny et al., 2024). Beyond text-based tasks, the focus has expanded to multimodal models that
process and generate not only text but also images, achieving significant success in domains such as
visual question answering (Radford et al., 2021) and text-to-image generation (Ramesh et al., 2021).

Despite these successes, the performance of large models on tasks that require a combination of
skills remains unclear. Real-world tasks often demand a blend of skills. For example, a typical
task like “navigating to the kitchen to fetch ten apples” involves spatial reasoning to understand the
environment and plan a path around obstacles, together with basic arithmetic to ensure that exactly
ten apples are retrieved. This example illustrates the multifaceted nature of real-world tasks. While
various benchmarks focus on specific skills (Chen et al., 2021; Hendrycks et al., 2021c;b; Lin et al.,
2022), there is a lack of benchmarks evaluating how large models perform on tasks that require a
combination of different skills.

To bridge this gap, we introduce XLOGOMINIPROG, a benchmark for program synthesis in the
visual programming domain. Our benchmark is constructed using the Mini-level of the XLogoOnline
platform (XLogoOnline, 2024), featuring 85 real-world and 1, 000 synthetic visual programming
tasks, each demanding a blend of diverse skills. Figure 1 illustrates examples of these tasks. Each
task includes a visual grid with a turtle that needs to be directed to complete a specific goal. For
example, in Task 28, the goal is to direct the turtle to collect all red shapes without stepping on
the color green, requiring logical reasoning, spatial reasoning, planning, and basic programming
skills. Task 38 requires additional math word problem-solving to collect 10 strawberries. These

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Task 28: Collect all red
shapes without standing on
the color green.

Required Skills: Logic,
Basic Actions

def Run():
move_forward()
move_forward()
move_back()
turn_right()
move_forward()
move_forward()
turn_left()
move_forward()

Task 38: Collect exactly
10 strawberries.

Required Skills: Math,
Basic Actions

def Run():
move_forward()
turn_left()
move_forward()
move_back()
turn_left()
move_forward()
turn_left()
move_forward()
turn_left()
move_forward()

Task 65: Draw the pic-
ture using the colors yel-
low, green, blue and red.

Required Skills: Draw,
Variables, Basic Actions

def Run():
setpc("yellow")
move_forward()
turn_right()
setpc("green")
move_forward()
turn_left()
setpc("blue")
move_forward()
turn_right()
setpc("red")
move_forward()

Task 73: Draw the picture
in green.

Required Skills: Draw,
Variables, Loops

def Run():
for i in range(4):
setpc("green")
move_forward()
setpc("white")
move_forward()
turn_right()
move_forward()

Task 87: Find the
strawberry with just 6
commands.

Required Skills: Code
Constraints, Loops

def Run():
move_forward()
turn_right()
for i in range(3):
move_forward()

turn_right()
move_forward()

Figure 1: Examples of real-world tasks, required skills, and solution codes in XLogoOnline-Mini.

tasks provide a testbed for evaluating how large models perform on tasks that require a combination
of skills, presenting a unique challenge to current large models.

Logic

Math

Draw

Basic
Actions Loops

Variables

Loops and
Variables

Code
Constraints

0.01

0.10

1.00

GPT-4V Llama3-70B Llama3-8B-Emu

Figure 2: Large models’ perfor-
mance across different skills in
real-world tasks (log scale).

We evaluate the performance of large models on these tasks
and find that GPT-4V (Vision) model (OpenAI, 2023b) achieves
a 20% success rate on the real-world tasks, and Llama3-70B
model (Meta, 2024) struggles significantly, achieving only a
2.35% success rate. This indicates that current large models are
not yet capable of effectively solving visual programming tasks
requiring various skills. Figure 2 compares the performance of
large models across different skill dimensions on these tasks.
To improve performance, we develop a fine-tuning pipeline by
leveraging a large-scale synthetic dataset containing over 80, 000
visual programming tasks. Our fine-tuned Llama3-8B model
outperforms GPT-4V and Llama3-70B, achieving a 54.12% suc-
cess rate. Moreover, we leverage emulator feedback to design
a curriculum over the training data distribution, improving per-
formance by 6.1% over standard supervised fine-tuning.

Our contributions are as follows: First, we introduce XLOGOMINIPROG, a program synthesis
benchmark based on the XLogoOnline platform to evaluate large models in visual programming,
which requires a blend of different skills. Second, we develop a fine-tuning pipeline that includes
synthetic dataset generation and supervised fine-tuning, along with an emulator-driven fine-tuning
technique that improves standard supervised fine-tuning performance by 6.1%. Third, we conduct
extensive experiments to benchmark the performance of different models, providing an in-depth
failure analysis and a detailed analysis of their expertise across multiple skill dimensions.

2 RELATED WORK

Program synthesis benchmarks for large models. Program synthesis aims to automatically
generate programs from specifications. Recently, numerous recent works have focused on training
large models specifically for program synthesis (Chen et al., 2021; Rozière et al., 2023; Fried et al.,
2023; Nijkamp et al., 2023). To evaluate these large models, many program synthesis benchmarks
have been developed, such as HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021), and
APPS (Hendrycks et al., 2021a). However, these benchmarks focus on generating code from natural
language or docstrings for general programming languages such as Python (Chen et al., 2021; Austin

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

et al., 2021; Hendrycks et al., 2021a). Our benchmark focuses on program synthesis in the visual
programming domain. While our benchmark covers basic programming like loops and variables,
it requires models to combine spatial, logical, and programming skills, posing unique challenges
not addressed by these program synthesis benchmarks.

Large models for visual programming. Visual programming has been studied in various scenarios,
such as task synthesis (Ahmed et al., 2020; Ghosh et al., 2022; Wen et al., 2024; Pădurean et al.,
2023), program synthesis (Bunel et al., 2018; Chen et al., 2019b), and student modeling (Nguyen
et al., 2024). With the rise of large models, some initial works evaluate ChatGPT (OpenAI, 2023a)
and GPT-4 (OpenAI, 2023b) in these scenarios, showing that large models struggle with visual
programming tasks (Pădurean et al., 2023; Nguyen et al., 2024; Singla, 2023). In contrast, we
provide a comprehensive benchmark for evaluating large models for program synthesis in visual
programming, considering a wider range of models and skills.

Spatial reasoning and planning benchmarks. Existing benchmarks for spatial reasoning and
planning are primarily designed for reinforcement learning agents to solve sequential decision-making
tasks (Chevalier-Boisvert et al., 2019; 2023). Additionally, some benchmarks aim to evaluate models
in domains where spatial reasoning and planning skills are essential, such as visual navigation and
object interaction (Shridhar et al., 2020; Chen et al., 2019a). With the advent of large models, recent
works have also begun to evaluate LLMs’ capabilities in spatial reasoning and planning (Aghzal
et al., 2023; Valmeekam et al., 2023). Our benchmark, however, focuses on the visual programming
domain, which requires a broader range of skills beyond spatial reasoning and planning, including
logical reasoning, math word problem-solving, and programming skills.

3 BACKGROUND AND SYNTHESIS OBJECTIVE

In this section, we provide the background on the XLogoOnline visual programming platform and
then introduce the program synthesis objective.

3.1 BACKGROUND ON XLOGOONLINE-MINI PROGRAMMING

XLogoOnline (XLogoOnline, 2024) is a visual programming platform based on Logo programming
language (Pea, 1987) and is widely used by tens of thousands of students every year (Hromkovic
et al., 2017; Staub, 2021). In this work, we focus on the Mini-level (XLogoOnline-Mini). In
XLogoOnline-Mini, each task includes a text description of the goal and code constraints, along with
a two-dimensional visual grid. The visual grid features a turtle and various elements such as fruits,
shapes, colors, lines, walls, and forbidden areas. To solve the task, one needs to write a program to
direct the turtle’s movement in the visual grid to achieve the specified goal. Figure 1 shows illustrative
examples of tasks, the required skills, and solution codes.

Required skills for XLogoOnline-Mini. We examine the skills required for solving visual program-
ming tasks in XLogoOnline-Mini. Specifically, the visual programming tasks in our domain cover the
following skills: (i) Logic: Understand underlying logical relationships specified in the goal; (ii) Math:
Apply basic arithmetic to solve the task; (iii) Draw: Identify patterns and generate the corresponding
code; (iv) Basic actions: Move and change directions using only basic commands; (v) Loops: Utilize
loops to repeat commands multiple times; (vi) Variables: Utilize variables to set and update colors
to draw lines with a specific color; (vii) Loops and Variables: Integrate loops with variables to solve
a task; (viii) Code Constraints: Adhere to specific code constraints such as maximum code length.

3.2 PROGRAM SYNTHESIS OBJECTIVE

Next, we formally define task and code specifications, and introduce our synthesis objective.

Task specifications. In XLogoOnline-Mini, a task T := (G,L,W) consists of a goal G, code
constraints L, and a visual grid world W. The goal G defines the turtle’s objective. The code constraints
L specify the requirements for a solution code. There are five types of constraints for code: None (no
restrictions), AtMost (maximum number of commands), Exactly (exact number of commands),
StartBy (initial command sequence), and Hybrid (combination of constraints). The visual grid
world W is a 2-dimensional visual grid featuring a turtle and various elements. We define the grid
size as the maximum dimension of the grid. For example, in Figure 1 (Task 87), the goal is “Find

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Task Type # Code Constraints # Code Concepts # Code Length # Grid Size #

Find 33 None 54 Basic Actions 47 Short (1-5) 41 Size ≤ 3 59
Draw 33 AtMost 21 Loops 24 Medium (6-10) 29 Size = 4 15
Math 10 Exactly 6 Variables 7 Long (11-17) 15 Size = 5 4
Logic 9 StartBy 4 Loops and Variables 7 Size = 6 4

Hybrid 0 Size ≥ 7 3

Total 85 Total 85 Total 85 Total 85 Total 85

(a) Task distribution of REAL dataset.

0 25 50
Tasks

Code Constraints
Loops and Variables

Variables
Loops

Basic Actions
Draw
Math
Logic

31
7
7

24
47

33
10

9

(b) Skill distribution of REAL dataset.

code C := def Run() Do b

rule b := a | b; b | repeat(x) do b

action a := forward | backward | left | right | setpc(r)

color r := red | blue | green | white | black | yellow

iter x := 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10

(c) Code DSL.

Figure 3: Statistics of the REAL dataset and the code DSL. (a) shows the task distribution across five
dimensions within REAL. (b) illustrates the skill distribution. To describe these skills, we extract
various aspects from task type, code constraints, and code concepts as detailed in (a), and consolidated
these aspects into broader categories, which we refer to as skills. A task may require multiple skills
(see Figure 1). (c) shows the code DSL used in the XLogoOnline-Mini domain.

the strawberry”, the code constraint is “use just 6 commands” (AtMost), and the visual grid world
depicts a 3× 4 grid (size = 4) with a turtle, a strawberry, and forbidden areas marked by gray cells.

Code specifications. The code space of XLogoOnline-Mini is defined by the domain-specific
language (DSL) depicted in Figure 3c. Note that while the DSL defines the formal structure and
syntax, we implement it using Python-style code representation to leverage the large models’ pre-
trained knowledge on Python programming. A solution code for a given task is the code that meets
the task’s code constraints and achieves the specified goal when executed in the visual grid world. In
Figure 1, a solution code is provided below each task.

Program synthesis objective. Our objective is to develop a synthesizer function, f : T → C, which
generates a solution code C for a given visual programming task T. To evaluate f on a task T, we
first use f to synthesize a code Ĉ and then execute the synthesized code Ĉ using an emulator. The
emulator outputs success if the synthesized code Ĉ successfully solves the task T and adheres to code
constraints; otherwise, the emulator outputs fail. We use success as the main evaluation metric. Given
a dataset Deval = {Ti}Ni=1, we calculate the success rate of f on this dataset as the overall performance.
We curate a dataset REAL of N = 85 real-world visual programming tasks from XLogoOnline-Mini
and we use this as one of the main datasets for evaluation. In Figures 3a and 3b, we show the overall
distribution of this dataset and the number of tasks requiring specific skills, respectively.

4 METHODOLOGY FOR SYNTHETIC DATASET GENERATION AND FINE-TUNING

As discussed in Section 1, existing large models such as GPT-4V and Llama3-70B struggle with
visual programming tasks in XLogoOnline-Mini. To address this, we develop a two-stage fine-tuning
pipeline consisting of synthetic dataset generation and supervised fine-tuning. This section details the
dataset generation process and the methodology for fine-tuning large models on the synthetic dataset.

4.1 SYNTHETIC DATASET GENERATION

Our goal is to develop a large synthetic dataset for training models (Bunel et al., 2018). To achieve
this, we adopt the task synthesis techniques from (Ahmed et al., 2020; Wen et al., 2024), which were
developed to automatically generate high-quality tasks in visual programming domains. Instead
of random task generation, these techniques allow us to perform more controlled and systematic task

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Task Type # Code Constraints # Code Concepts # Code Length # Grid Size #

Find 36, 055 None 34, 680 Basic Actions 53, 779 Short (1-5) 20, 985 Size ≤ 3 35, 908
Draw 24, 851 AtMost 29, 354 Loops 24, 432 Medium (6-10) 45, 682 Size = 4 25, 933
Math 14, 994 Exactly 16, 169 Variables 5, 931 Long (11-17) 22, 386 Size = 5 14, 852
Logic 13, 153 StartBy 1, 430 Loops and Variables 4, 911 Size = 6 8, 061

Hybrid 7, 420 Size ≥ 7 4, 299

Total 89, 053 Total 89, 053 Total 89, 053 Total 89, 053 Total 89, 053

(a) Task distribution of SIM dataset.

0 25k 50k 75k
Tasks

Code Constraints
Loops and Variables

Variables
Loops

Basic Actions
Draw
Math
Logic

54,373
4,911
5,931

24,432
53,779

24,851
14,994

13,153

(b) Skill distribution of SIM dataset.

SIM dataset #

Train Size 87, 053
Validation Size 1, 000
Evaluation Size 1, 000

Total Size 89, 053

(c) Dataset split of SIM dataset.

Figure 4: Statistics of the synthetic SIM dataset. (a) and (b) show the task distribution and the skill
distribution, respectively. (c) shows the dataset split.

synthesis, such as specifying task types, code concepts, and code lengths, enabling us to generate
tasks with different skills and difficulty levels.

Adapting task synthesis techniques. Given a task-code pair as a reference input, the original task
synthesis techniques can produce a small, predefined number of tasks and solution codes suited for
educational purposes (Ahmed et al., 2020; Wen et al., 2024). Since our goal is to develop a large
and diverse dataset for training, we make two key modifications: (i) we remove scoring functions,
enabling us to generate a large quantity of tasks instead of a limited selection for educational
uses; (ii) we relax task synthesis parameters to enhance techniques’ ability to generate more tasks,
including allowing larger grid sizes and longer code lengths. While the resulting tasks may not be
ideal for educational purposes, they are diverse and challenging for training large models.

Dataset generation process and statistics. We use the adapted task synthesis technique to generate
a synthetic dataset as follows: (i) we manually craft a solution code for each task in the REAL dataset,
resulting in a set {(Ti,Ci)}85i=1; (ii) for each (Ti,Ci), we generate up to 1, 500 synthesized tasks and
their solution codes. To ensure the quality of the dataset, we take the following processing steps:
we remove any duplicate task-code pairs to maintain diversity, conduct a correctness check on the
generated solution codes using the emulator, and exclude any task-code pairs present in the real-world
REAL dataset from our synthetic dataset. This last processing step guarantees that the model has
not seen any tasks from the evaluation dataset during training. We ultimately produce the synthetic
dataset SIM with 89, 053 task-code pairs. The statistics of this dataset are detailed in Figure 4. Note
that the distribution of this synthetic dataset slightly differs from the real-world dataset REAL (see
Figure 3a) due to the aforementioned processing steps and the fact that not all reference tasks can
generate the desired number of synthesized tasks. From this synthetic dataset, we randomly select
1, 000 samples for validation, 1, 000 samples for evaluation, and the remaining samples for training.
We use this synthetic evaluation dataset (1, 000 samples), referred to as SIM-EVAL, to complement
the real-world dataset REAL in evaluating the model’s performance. We provide full details of the
dataset generation process and dataset quality assessment in the supplementary material.

4.2 METHODOLOGY FOR FINE-TUNING

Translating tasks and codes. In our synthetic dataset, tasks and codes are represented in JSON format
for ease of parsing and interpretation. However, directly using the JSON format can be challenging
for training large models, which are typically pre-trained on natural language texts. Therefore, we
translate the JSON representations of each task and code into natural language descriptions and
Python-style code, respectively, using a fixed template shown in Figure 5a.

Supervised fine-tuning using synthetic dataset. Fine-tuning can involve adjusting all model
parameters, modifying only a few layers, or adding new layers (Han et al., 2024). However, fully

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

You are presented with a visual program-
ming task involving a goal, a grid, a tur-
tle, various items (or lines). You need to
write Python code that enables the turtle
to accomplish the goal within the grid.

{description_of_grid_properties}
{description_of_python_functions}

Now, write a correct Python code that
successfully solves the following task.
Task:
{description_of_task}
Goal:
{description_of_goal}
Correct code:

(a) Prompt template.

(2) Training(1) Emulator-driven
Resampling

 (3) Next Iteration

(b) Overview of emulator-driven fine-tuning.

Emulator SampleInference

(c) Emulator-driven resampling.

Figure 5: (a) shows the prompt template for fine-tuning. This prompt has several placeholders to
include details for the descriptions of different aspects of the task. More details can be found in the
supplementary material. (b) provides an overview of emulator-driven fine-tuning, starting with the
dataset D and initial model f0, and iteratively resampling and training to produce the final model fK .
(c) illustrates the resampling process in emulator-driven fine-tuning to create the dataset Dk.

fine-tuning all parameters can be computationally expensive and time-consuming. Therefore, we
adopt Low-Rank Adaptation (LoRA) (Hu et al., 2022), a parameter efficient fine-tuning technique
which introduces trainable rank decomposition matrices into the model’s network weights. We train
models on the SIM dataset using LoRA in a standard supervised manner. The model receives a
natural language task description as input and outputs Python-style code. The model is optimized to
minimize the cross-entropy loss between the predicted code and the ground truth solution code.

Emulator-driven feedback for fine-tuning. Standard supervised fine-tuning assigns equal weights
to all samples in the training dataset. However, our domain presents a unique challenge where tasks
vary widely in required skills and difficulty levels (see Figure 4). Additionally, some skills serve as
prerequisites for mastering more advanced ones. For instance, a model typically needs to understand
basic actions before mastering loops and variables, and it generally solves tasks with shorter code
lengths before being able to tackle longer ones. Consequently, treating all tasks with equal importance
can be suboptimal in our setting (Bengio et al., 2009). To address this, we introduce emulator-
driven fine-tuning, which designs a curriculum over training data distribution by leveraging emulator
feedback. The key idea is to dynamically adjust the training data distribution based on the emulator’s
evaluation of the model, assigning higher weights to tasks where the model struggles, thereby
progressively guiding the model from simpler tasks that it can easily solve to more complex tasks.

The overall process is shown in Figure 5b and 5c. More formally, given an initial model f0 and the
training dataset D, our goal is to learn a final model fK . To achieve this, at each training epoch k,
we first perform the emulator-driven resampling step (see Figure 5c), where we use the model fk
to infer on the training dataset D to obtain the predicted code Ĉi for each task Ti. We evaluate each
predicted code using an emulator and update the weight wi for (Ti,Ci) as follows:

wi =
1

|D|
[
1 + β · I

(
Emulator(Ti, Ĉi) = fail

)]
, (1)

where I(·) is an indicator function that returns 1 if the predicted code fails to solve Ti, and 0 otherwise.
The hyperparameter β is adjustable, with a larger β encouraging the model to focus more on its mis-
takes and β = 0 equivalent to fine-tuning without resampling. Then, we sample the training dataset D
according to the categorical distribution w′

i = wi/
∑|D|

j=1wj , obtaining a resampled dataset Dk. After
resampling, we perform the training step, where we train the model fk using the resampled dataset
Dk to obtain the model fk+1. Finally, we repeat the resampling and training steps until the model con-
verges or reaches a predefined number of training epochs, yielding the final model fK . To reduce com-
putational costs, resampling can be performed at fixed intervals (set to 3 epochs in our experiments).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5 EXPERIMENTAL EVALUATIONS

In this section, we evaluate the performance of large and fine-tuned models on the XLOGOMINIPROG
benchmark. We first outline the experimental setup in Section 5.1, then present the main results and
failure analysis in Sections 5.2 and 5.3, followed by additional analysis in Section 5.4.

5.1 EXPERIMENTAL SETUP

Models evaluated. We compare a range of large models and their fine-tuned versions. All models
are queried with temperature 0. We evaluate the following models:

• Large language models (LLMs). We evaluate the following LLMs: (i) GPT-3.5 model (version gpt-
3.5-turbo-0125) (OpenAI, 2023a); (ii) GPT-4 model (version gpt-4-turbo-2024-04-09) (OpenAI,
2023b); (iii) Llama2 and Llama3 models with 7B, 13B, and 70B parameters, respectively (version
instruction-tuned) (Touvron et al., 2023; Meta, 2024).

• Vision language models (VLMs). We evaluate the following VLMs: (i) GPT-4V model (version gpt-
4-turbo-2024-04-09); (ii) Llava1.5 models (version llava-v1.5-7B and llava-v1.5-13B) (Liu et al.,
2023a); (iii) InternVL2 models (versions InternVL2-8B and InternVL2-Llama3-76B) (Chen et al.,
2023); (iv) Qwen2VL models (versions Qwen2VL-7B-Instruct and Qwen2VL-72B-Instruct) (Wang
et al., 2024); (v) NVLM-D model (version NVLM-D-72B) (Dai et al., 2024); and (vi) Molmo
models (versions Molmo-7B-D and Molmo-72B) (Deitke et al., 2024). VLMs are queried in the
same way as LLMs, but with a task image provided as additional input to leverage their vision
capabilities.

• Fine-tuned models. We fine-tune the Llama2-7B, Llama3-8B, and Llava1.5-13B models using
our synthetic dataset. Llama3-8B-Uni is fine-tuned on our synthetic training dataset with uniform
data distribution (i.e., standard fine-tuning). Llama3-8B-Emu is fine-tuned on the same dataset
with emulator-driven resampling in Section 4.2. We apply the same fine-tuning procedures to
Llama2-7B base models, yielding Llama2-7B-Uni and Llama2-7B-Emu. For Llava1.5-13B, we
apply standard supervised fine-tuning with task images, resulting in Llava1.5-13B-Uni. Additional
fine-tuning details are in the supplementary material.

Evaluation procedure and metrics. We evaluate models using two datasets: REAL and the synthetic
dataset SIM-EVAL (see Figure 4c). For each task in our evaluation datasets, we first convert the task
from JSON format into natural language description using a fixed prompt template (see Figure 5a).1
For multimodal models (e.g., GPT-4V, Llava1.5), we also provide an image of the task as additional
input to the model. Then, we use the model to generate the code in Python programming language.
However, the model might produce the natural language explanation alongside code. We extract only
the Python code from the models’ outputs. Finally, we run the extracted code using an emulator
and evaluate the model. We use success as the main metric (see Section 3.2), and also consider two
additional metrics: (i) Format, which evaluates if the model’s output adheres to the desired code
format, and (ii) No-Crash, which evaluates if the code runs without crashing, such as hitting walls,
entering forbidden areas, or exceeding grid boundaries.

5.2 MAIN RESULTS

Base models’ performance. The results are shown in Figure 6. Among the base models evaluated,
GPT-4V performs the best with a success rate of 20.00% on the REAL dataset. Notably, GPT-4V
outperforms GPT-4, which has a success rate of 12.94%. This suggests that incorporating visual
information can enhance the performance of large models on visual programming tasks. However,
all other base models, including GPT-3.5, Llama, and Llava models, perform poorly on REAL.
Regarding the synthetic evaluation dataset SIM-EVAL, we find that the performance of most base
models declines. This is because the tasks in SIM-EVAL are more challenging than those in REAL
in terms of code length and grid size (see Figure 3 and 4). For example, the calculated percentage
of code with length “Long (11-17)” in SIM-EVAL is 25.14%, compared to 17.65% in REAL.

1The prompt template does not include few-shot examples or advanced prompting strategies. The evaluation
of different prompting strategies is provided in the supplementary material.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

REAL (85 samples) SIM-EVAL (1, 000 samples)

Format (%) No-Crash (%) Success (%) Format (%) No-Crash (%) Success (%)

Base LLMs
GPT-3.5 92.94 11.76 1.18 87.60 9.50 1.60
GPT-4 95.29 38.83 12.94 97.40 16.80 5.30
Llama3-8B 48.24 5.88 0.00 40.90 2.80 0.60
Llama3-70B 67.06 8.24 2.35 15.50 1.20 0.30
Llama2-7B 27.06 5.88 0.00 21.90 2.90 0.40
Llama2-13B 60.00 7.06 0.00 54.40 3.50 0.40
Llama2-70B 28.24 7.06 0.00 38.30 1.10 0.10

Base VLMs
GPT-4V (Vision) 96.47 47.06 20.00 95.50 18.10 5.50
Llava1.5-7B 10.59 1.18 0.00 3.20 0.00 0.00
Llava1.5-13B 10.59 2.35 0.00 9.00 2.10 0.00
InternVL2-8B 0.00 0.00 0.00 56.90 3.80 0.00
InternVL2-Llama3-76B 77.65 31.76 9.41 40.50 6.10 1.50
Qwen2VL-7B-Instruct 43.53 9.41 0.00 14.30 2.10 0.20
Qwen2VL-72B-Instruct 28.24 11.76 0.00 36.50 4.40 0.40
NVLM-D-72B 61.18 8.24 1.18 67.40 8.30 2.00
Molmo-7B-D 75.29 8.24 0.00 66.00 7.70 0.60
Molmo-72B 4.71 1.18 1.18 6.40 0.70 0.40

Fine-tuned models
Llava1.5-13B-Uni 68.24± 18.48 19.53± 14.98 11.99± 10.55 56.18± 15.68 13.64± 11.36 10.68± 10.23
Llama2-7B-Uni 99.76± 0.24 65.88± 1.05 45.65± 0.86 99.98± 0.02 62.64± 0.33 53.04± 0.20
Llama2-7B-Emu 100± 0.00 69.41± 1.97 51.53± 0.44 99.96± 0.02 68.70± 0.49 60.10± 0.69
Llama3-8B-Uni 99.53± 0.29 73.65± 0.80 54.12± 1.78 99.96± 0.04 71.26± 1.01 62.72± 1.17
Llama3-8B-Emu 99.76± 0.24 71.53± 0.78 60.23± 1.01 100± 0.00 74.92± 0.60 66.92± 0.65

Figure 6: Performance comparison of models on two evaluation datasets. Bold values indicate the
highest performance in each column across base or fine-tuned models. Fine-tuned models are trained
using 5 different random seeds and we report the mean and standard error of the performance.
Effectiveness of fine-tuning. Standard fine-tuning on a domain-specific dataset enhances the
performance of base models, especially Llama models. As shown in Figure 6, after standard fine-
tuning, the success rate for Llama3-8B-Uni is 54.12% on REAL and 62.72% on SIM-EVAL. Similar
improvements are observed for Llama2-7B-Uni. However, the improvement for Llava1.5-13B-Uni
does not match the gains from fine-tuning the Llama models, and exhibits inconsistent performance
across different seeds, as shown by the large standard errors. We also note that the performance
of fine-tuned models on REAL generally lags behind their performance on SIM-EVAL. This is
because the task distribution of SIM-EVAL more closely resembles the training dataset due to the
dataset split. Our results also show that emulator-driven resampling effectively enhances fine-tuning
performance. Llama3-8B-Emu achieves a success rate of 60.23% and 66.92% on REAL and SIM-
EVAL, respectively, outperforming Llama3-8B-Uni by 6.11% and 4.20%.2

5.3 FAILURE ANALYSIS

In this section, we perform failure analysis to better understand the limitations of different models. We
conduct two types of failure analysis: (i) explanation-based failure analysis, where we examine the
explanations generated by the models to identify the reasons for failures, and (ii) perturbation-based
failure analysis, where we evaluate the models’ performance on simplified, perturbed tasks.

Explanation-based failure analysis. We first present a failure analysis by analyzing the output codes
and explanations of different models. We consider base models, specifically GPT-4V and Llama3-
70B, as fine-tuned models are trained to generate code without explanations. To conduct the failure
analysis, we first identify common failure types, which are categorized as follows: (i) Repetition:
generating the same code sequences repeatedly; (ii) Format: producing code with incorrect formatting,
including the use of disallowed commands; (iii) Goal: misinterpreting the goal or attempting to
devise a tricky approach to achieve the goal; (iv) Code constraints: failing to adhere to specified code
constraints while solving the task; (v) Grid constraints: attempting to solve the task while ignoring
walls, forbidden cells, or grid boundaries; (vi) Spatial reasoning: misunderstanding coordinates or
directions following movements or turns; (vii) Hallucination: generating non-existent items or code
commands. Then we systematically analyze the explanations generated by the models alongside the
output code and manually annotate the underlying reasons for each failure. In cases where multiple
failure reasons are identified, we attribute the failure to the most significant cause. The results of this
analysis are shown in Figure 7a. Our findings indicate that both GPT-4V and Llama3-70B exhibit the
most difficulty with spatial reasoning. For Llama3-70B, another primary failure type is the repetition,
where the model generates the same code sequences repeatedly.

2However, fine-tuning on domain-specific datasets can also lead to a performance drop in other domains.
Additional results are provided in the supplementary material.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Repetition Format Goal Code Constraints Grid Constraints Spatial Reasoning Hallucination Success

GPT-4V 0.00 3.53 11.76 7.06 11.76 42.35 3.53 20.00
Llama3-70B 34.12 1.18 5.88 3.53 8.24 44.71 0.00 2.35

(a) Failure rates (%) of different failure types by analyzing model outputs on the REAL dataset. Bold values
highlight the most common failure type for each model.

T TA TB TC TA,B TB,C TA,C TA,B,C

GPT-4V 0.00 30.00 30.00 50.00 50.00 50.00 60.00 60.00
Llama3-70B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Llama3-8B-Uni 0.00 0.00 10.00 0.00 20.00 20.00 0.00 30.00

(b) Success rates (%) of models across 80 perturbed tasks. Each type of perturbation includes 10 tasks.
Perturbations are grouped by the number of components removed. Bold values indicate the highest success rate
for each model within each perturbation group.

Figure 7: Explanation-based and perturbation-based failure analysis on the REAL dataset. (a)
highlights the main reasons for model failures by analyzing model explanation, with spatial reasoning
being the primary reason for both GPT-4V and Llama3-70B. (b) presents the success rates of models
on perturbed tasks, showing that GPT-4V faces difficulties with spatial reasoning, while the fine-tuned
Llama3-8B-Uni struggles most with grid constraints.

Perturbation-based failure analysis. We provide another type of failure analysis by perturbing
tasks to understand the limitations of different models. In this analysis, we consider both base and
fine-tuned models, including GPT-4V, Llama3-70B, and Llama3-8B-Uni. We first select 10 tasks
from the REAL dataset that the three models consistently fail to solve. For each task, we consider
three types of perturbations: (A) removing code constraints, (B) removing grid constraints (i.e., walls
and forbidden cells), and (C) simplifying spatial relationships (i.e., moving the turtle closer to the
target). If a task lacks certain components (e.g., no code or grid constraints), we leave the task
unchanged. In total, we analyze 80 tasks (10 selected tasks × 8 perturbed versions per task). These 8
perturbed versions include: the original tasks (T), 3 tasks with one component removed (TA,TB,TC),
3 tasks with two components removed (TA,B,TA,C,TB,C), and 1 task with all components removed
(TA,B,C). Finally, we evaluate the performance of different models on these perturbed tasks. As
shown in Figure 7b, GPT-4V struggles most with handling spatial relationships. When simplifying
spatial relationships, GPT-4V’s success rate increases significantly, from 0% to 50.0% (see columns
T and TC). On the other hand, Llama3-8B-Uni struggles most with grid constraints. Removing grid
constraints improves its success rate to 10.0% (column TB), while removing the other two components
(code constraints and spatial relationships) has no noticeable effect on its performance. 3

5.4 ADDITIONAL RESULTS AND ANALYSIS

In this section, we provide additional experiments and results to further analyze the performance of
models on our visual programming tasks.

Comparative analysis of models’ capabilities. We evaluate model performance across various
dimensions to identify strengths and weaknesses. To this end, we automatically categorize each
task-code pair according to different dimensions (e.g., task type). We determine the model’s capability
in a specific aspect within a dimension (e.g., Math in the task type dimension) by calculating the
success rates for all tasks involving that aspect. In Figure 8, we present a comparative analysis of three
representative models—GPT-4V, Llama3-70B, and Llama3-8B-Emu—across distinct dimensions
using the REAL dataset. Overall, Llama3-8B-Emu consistently outperforms other models across all
dimensions and GPT-4V shows superior performance compared to Llama3-70B in most aspects. In
Figure 8a, 8b, and 8c, we find that the GPT-4V and Llama3-70B struggle most with tasks of type
“logic” and with scenarios that impose code constraints such as AtMost and Exactly. In terms of
code concepts, Llama3-70B fails to solve any tasks that require variables, showing its limitations in
handling complex programming concepts in visual programming. Notably, as shown in Figure 8d,

3Interestingly, our failure analysis shows that Llama3-8B-Uni performs worse than GPT-4V. This may be due
to the failure analysis tasks having a different distribution than those in Figure 6. Specifically, we select tasks
that all models initially failed on, indicating that Llama3-8B-Uni already struggles with them. After perturbation,
these tasks diverge further from the training data distribution. In contrast, GPT-4V is not affected by these
distribution shifts and its stronger generalization abilities make it perform better on these tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Logic

Math

Draw

Basic
Actions Loops

Variables

Loops and
Variables

Constraints

0.01

0.10

1.00

GPT-4V Llama3-70B Llama3-8B-Emu

Find

Draw

Math

Logic

0.01

0.10

1.00

(a) Task Type

None

StartBy

AtMost

Exactly

0.01
0.10
1.00

(b) Code Constraints

Basic Actions

Loops

Variables

Loops and
Variables

0.01

0.10

1.00

(c) Code Concepts

Grid 3

Code
Short

Code
Medium

Code Long

Grid 6

Grid 4-5
0.01

0.10

1.00

(d) Code Length and Grid Size

Figure 8: Comparative analysis of models’ capabilities across different dimensions on REAL. Each
chart highlights the models’ capabilities in different aspects within a dimension. Note that code
length and grid size are combined in the same chart, as both indicate the difficulty levels of the tasks.
The performance metrics are logarithmically scaled to enhance clarity.

the performance of all models declines with increasing difficulty of tasks, as indicated by longer
code lengths and larger grid sizes. GPT-4V fails to solve tasks requiring long code sequences or
grid sizes larger than 6. Llama3-70B performs even more poorly, starting to fail on tasks requiring
medium-length codes and grid sizes larger than 3.

Can fine-tuned models learn transferable skills? We explore whether fine-tuned models can
develop transferable skills to solve tasks that are not seen during training. To investigate this, we first
exclude all tasks involving math skills (e.g., Task 38 in Figure 1) from the training dataset, resulting
in a reduced training dataset with 72k samples. Then we fine-tune Llama3-8B on this reduced dataset
using standard supervised learning, referring to the resulting model as Llama3-8B-Uni (no-math).

REAL (10 tasks) SIM-EVAL (176 tasks)

Llama3-70B 0.00 0.00
Llama3-8B-Uni (no-math) 10.00± 10.00 6.25± 1.18
Llama3-8B-Uni 40.00 ± 5.48 38.98 ± 1.82

Figure 9: Success rates (%) of models on math
tasks. Success rates of fine-tuned models are re-
ported as mean and standard error across five seeds.

Next, we evaluate this model exclusively on
math tasks from the evaluation datasets. The
results are shown in Figure 9. Our results
reveal that Llama3-8B-Uni (no-math) outper-
forms Llama3-70B, despite neither model being
trained on math tasks. This suggests that the
fine-tuned Llama3-8B-Uni (no-math) acquires
certain transferable skills. However, compared
to Llama3-8B-Uni, which was trained on the
full dataset including math tasks, the no-math version performs much worse. This indicates that while
Llama3-8B-Uni (no-math) learns some generalizable skills, it is less effective than the model trained
directly on data that includes those skills.

6 CONCLUDING DISCUSSIONS

Summary. In this paper, we introduced the XLOGOMINIPROG benchmark to evaluate the program
synthesis capabilities of large models within the XLogoOnline visual programming environment.
We found that large models struggle with visual programming tasks that require a combination of
skills, despite our benchmark tasks only requiring basic programming skills. Our best evaluated base
model, GPT-4V, only achieved a 20% success rate. To improve performance, we developed a fine-
tuning pipeline that involves synthetic dataset generation followed by supervised fine-tuning. This
pipeline enabled the Llama3-8B model to achieve a success rate of 54.12% on the benchmark tasks.
Additionally, we demonstrated that leveraging emulator-driven feedback can further enhance standard
fine-tuning performance by approximately 6% in both Llama3-8B and Llama2-7B models. Through
failure analysis, we found that GPT-4V and Llama3-70B struggle most with spatial reasoning, while
the fine-tuned Llama3-8B-Uni faces the most difficulty with grid constraints.

Limitations and future work. We discuss some limitations of our work and propose ideas for
addressing them in the future. First, our benchmark focuses on basic programming skills, and future
work could extend it to include more complex programming tasks. This could involve tasks that
require more advanced programming concepts, such as conditionals and functions. Second, our
emulator-driven fine-tuning provides the model with only binary feedback on the correctness of the
predicted code. In the future, it would be interesting to provide more detailed feedback, such as
identifying specific errors in the generated code and then using this more informative feedback to
guide the fine-tuning process.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Mohamed Aghzal, Erion Plaku, and Ziyu Yao. Can Large Language Models be Good Path Planners?
A Benchmark and Investigation on Spatial-temporal Reasoning. CoRR, abs/2310.03249, 2023.

Umair Z. Ahmed, Maria Christakis, Aleksandr Efremov, Nigel Fernandez, Ahana Ghosh, Abhik
Roychoudhury, and Adish Singla. Synthesizing Tasks for Block-based Programming. In NeurIPS,
2020.

Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program Synthesis with
Large Language Models. CoRR, abs/2108.07732, 2021.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
ICML, 2009.

Tom B. Brown et al. Language Models are Few-Shot Learners. In NeurIPS, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott M. Lundberg, Harsha Nori, Hamid Palangi, Marco Túlio
Ribeiro, and Yi Zhang. Sparks of Artificial General Intelligence: Early experiments with GPT-4.
CoRR, abs/2303.12712, 2023.

Rudy Bunel, Matthew J. Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli. Leveraging
Grammar and Reinforcement Learning for Neural Program Synthesis. In ICLR, 2018.

Howard Chen, Alane Suhr, Dipendra Misra, Noah Snavely, and Yoav Artzi. TOUCHDOWN: Natural
Language Navigation and Spatial Reasoning in Visual Street Environments. In CVPR, 2019a.

Mark Chen et al. Evaluating Large Language Models Trained on Code. CoRR, abs/2107.03374,
2021.

Xinyun Chen, Chang Liu, and Dawn Song. Execution-Guided Neural Program Synthesis. In ICLR,
2019b.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu, Yu Qiao, and Jifeng Dai. Internvl:
Scaling up vision foundation models and aligning for generic visual-linguistic tasks. CoRR,
abs/2312.14238, 2023.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. BabyAI: A Platform to Study the Sample Efficiency of
Grounded Language Learning. In ICLR, 2019.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo Perez-Vicente, Lucas Willems, Salem
Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & Miniworld: Modular &
Customizable Reinforcement Learning Environments for Goal-Oriented Tasks. In NeurIPS, 2023.

Wenliang Dai, Nayeon Lee, Boxin Wang, Zhuoling Yang, Zihan Liu, Jon Barker, Tuomas Rintamaki,
Mohammad Shoeybi, Bryan Catanzaro, and Wei Ping. NVLM: Open Frontier-Class Multimodal
LLMs. CoRR, abs/2409.11402, 2024.

Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Z3: An Efficient SMT Solver. In TACAS,
2008.

Matt Deitke et al. Molmo and PixMo: Open Weights and Open Data for State-of-the-Art Multimodal
Models. CoRR, abs/2409.17146, 2024.

Paul Denny, Sumit Gulwani, Neil T. Heffernan, Tanja Käser, Steven Moore, Anna N. Rafferty, and
Adish Singla. Generative AI for Education (GAIED): Advances, Opportunities, and Challenges.
CoRR, abs/2402.01580, 2024.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong, Scott
Yih, Luke Zettlemoyer, and Mike Lewis. InCoder: A Generative Model for Code Infilling and
Synthesis. In ICLR, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ahana Ghosh, Sebastian Tschiatschek, Sam Devlin, and Adish Singla. Adaptive Scaffolding in
Block-Based Programming via Synthesizing New Tasks as Pop Quizzes. In AIED, 2022.

GitHub. Github Copilot. https://github.com/features/copilot, 2021.

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. Parameter-Efficient Fine-Tuning
for Large Models: A Comprehensive Survey. CoRR, abs/2403.14608, 2024.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring Coding Challenge
Competence With APPS. In NeurIPS Track on Datasets and Benchmarks, 2021a.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring Massive Multitask Language Understanding. In ICLR, 2021b.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring Mathematical Problem Solving With the MATH Dataset. In
NeurIPS Track on Datasets and Benchmarks, 2021c.

Juraj Hromkovic, Giovanni Serafini, and Jacqueline Staub. XLogoOnline: A Single-Page, Browser-
Based Programming Environment for Schools Aiming at Reducing Cognitive Load on Pupils. In
ISSEP, 2017.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-Rank Adaptation of Large Language Models. In ICLR, 2022.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient Memory Management for Large Language Model
Serving with PagedAttention. In SIGOPS, 2023.

Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring How Models Mimic Human
Falsehoods. In ACL, 2022.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. CoRR, abs/2310.03744, 2023a.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is Your Code Generated by
ChatGPT Really Correct? Rigorous Evaluation of Large Language Models for Code Generation.
In NeurIPS, 2023b.

Meta. Llama 3. https://llama.meta.com/llama3/, 2024.

Manh Hung Nguyen, Sebastian Tschiatschek, and Adish Singla. Large Language Models for
In-Context Student Modeling: Synthesizing Student’s Behavior in Visual Programming from
One-Shot Observation. In EDM, 2024.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and
Caiming Xiong. CodeGen: An Open Large Language Model for Code with Multi-Turn Program
Synthesis. In ICLR, 2023.

OpenAI. ChatGPT. https://openai.com/blog/chatgpt, 2023a.

OpenAI. GPT-4. https://openai.com/index/gpt-4/, 2023b.

Victor-Alexandru Pădurean, Georgios Tzannetos, and Adish Singla. Neural Task Synthesis for Visual
Programming. Transactions on Machine Learning Research, 2023.

Roy D Pea. Logo Programming and Problem Solving. 1987.

Sida Peng, Eirini Kalliamvakou, Peter Cihon, and Mert Demirer. The Impact of AI on Developer
Productivity: Evidence from Github Copilot. CoRR, abs/2302.06590, 2023.

Tung Phung, José Cambronero, Sumit Gulwani, Tobias Kohn, Rupak Majumdar, Adish Singla, and
Gustavo Soares. Generating High-Precision Feedback for Programming Syntax Errors using Large
Language Models. In EDM, 2023a.

12

https://github.com/features/copilot
https://openai.com/blog/chatgpt

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Tung Phung, Victor-Alexandru Padurean, José Cambronero, Sumit Gulwani, Tobias Kohn, Ru-
pak Majumdar, Adish Singla, and Gustavo Soares. Generative AI for Programming Education:
Benchmarking ChatGPT, GPT-4, and Human Tutors. In ICER V.2, 2023b.

Tung Phung, Victor-Alexandru Padurean, Anjali Singh, Christopher Brooks, José Cambronero,
Sumit Gulwani, Adish Singla, and Gustavo Soares. Automating Human Tutor-Style Programming
Feedback: Leveraging GPT-4 Tutor Model for Hint Generation and GPT-3.5 Student Model for
Hint Validation. In LAK, 2024.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning Transferable Visual Models From Natural Language Supervision. In ICML, 2021.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-Shot Text-to-Image Generation. In ICML, 2021.

Baptiste Rozière et al. Code Llama: Open Foundation Models for Code. CoRR, abs/2308.12950,
2023.

Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
Luke Zettlemoyer, and Dieter Fox. ALFRED: A benchmark for Interpreting Grounded Instructions
for Everyday Tasks. In CVPR, 2020.

Adish Singla. Evaluating ChatGPT and GPT-4 for Visual Programming. In ICER V.2, 2023.

Jacqueline Staub. Logo Environments in the Focus of Time. Bulletin of EATCS, 2021.

Hugo Touvron et al. Llama 2: Open Foundation and Fine-Tuned Chat Models. CoRR, abs/2307.09288,
2023.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo Hernandez, Sarath Sreedharan, and Subbarao
Kambhampati. PlanBench: An Extensible Benchmark for Evaluating Large Language Models on
Planning and Reasoning about Change. In NeurIPS Track on Datasets and Benchmarks, 2023.

Peng Wang et al. Qwen2-VL: Enhancing Vision-Language Model’s Perception of the World at Any
Resolution. CoRR, abs/2409.12191, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-Thought Prompting Elicits Reasoning in Large Language
Models. In NeurIPS, 2022.

Chao Wen, Ahana Ghosh, Jacqueline Staub, and Adish Singla. Task Synthesis for Elementary Visual
Programming in XLogoOnline Environment. In AIED Track on Late Breaking Results, 2024.

XLogoOnline. XLogoOnline Platform. https://xlogo.inf.ethz.ch/, 2024.

13

https://xlogo.inf.ethz.ch/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A TABLE OF CONTENTS

In this section, we provide a brief description of the content provided in the appendices of the paper.

• Appendix B provides more details about the datasets.
• Appendix C provides more details about the fine-tuning process and evaluation.
• Appendix D provides additional experiments and results.
• Appendix E provides more details about the prompts used for fine-tuning and evaluation.

B MORE DETAILS ABOUT THE DATASETS

We provide the following details about the datasets.

1. Real-world tasks in the XLogoOnline platform: The real-world visual programming tasks
in the REAL dataset are curated from the Mini level of the XLogoOnline platform. These
real-world programming tasks can be accessed and viewed at https://xlogo.inf.
ethz.ch/. Figure 10 shows the screenshots of the platform.

2. The benchmark source code and datasets: See the provided file iclr2025-xlogo-
benchmark_src.zip. After unzipping this file, the dataset is available in the data.zip
file.

3. Data license confirmation: We confirm that all data used in this paper is either publicly
available or has been obtained and used in accordance with the relevant data licenses.

(a) Task 38 (b) Task 73

Figure 10: Example tasks from the XLogoOnline platform. Students need to drag and drop different
blocks to solve the tasks.

B.1 DETAILS OF THE SYNTHETIC DATASET GENERATION

In this section, we provide more details about the generation process of the synthetic dataset SIM.

We use the adapted task synthesis technique (Ahmed et al., 2020; Wen et al., 2024) to generate a
synthetic dataset. The key idea is to take a reference task and its solution code as input, and then apply
symbolic execution and constraint satisfaction techniques to systematically enumerate all possible
task-code outputs. The details are described as follows.

First, we manually craft a solution code for each of the N = 85 tasks in the REAL dataset, resulting
in a set {(Ti,Ci)}Ni=1. However, our objective is to generate a large and diverse set of tasks to train
large models. To achieve this, we specify an additional parameter difficulty level D. This parameter
enables us to generate tasks with varying levels of difficulty by specifying the desired code length,
number of code constraints, and goals relative to the reference input, thereby enhancing the diversity
of the dataset. The parameters are detailed as follows:

14

https://xlogo.inf.ethz.ch/
https://xlogo.inf.ethz.ch/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

• Easy: The code length and number of code constraints remain the same as in the reference
code and code constraints, and the goal remains unchanged.

• Medium: The code length is increased by 1 or 2 additional commands compared to the
reference code, while the number of code constraints and the goal remain the same as in the
reference task T.

• Hard: The code length is increased by up to 2 additional commands, one more code
constraint is added compared to the reference code constraints, and the goal may be modified.

Note that the difficulty levels mentioned above indicate the relative difficulty of the generated tasks
compared to the reference task, not the absolute difficulty of the tasks.

Given the reference input (T,C,D), we begin by enumerating all possible codes, code constraints,
and goals that meet the specified difficulty levels. To achieve this, we first create templates for the
code, constraints, and goals, respectively, each containing placeholders. These placeholders are then
populated with specific values using an SMT-based constraint solver (de Moura & Bjørner, 2008).
This process allows us to generate all possible combinations of code, constraints, and goals that align
with the desired difficulty levels.

Next, we generate task-code pairs by combining the previously generated code, code constraints, and
goals with corresponding grid worlds. To generate these grid worlds, we symbolically execute the
previously generated code within an empty grid, constructing elements like walls and target items
to ensure the grid can be successfully solved by the code. After the grid world is constructed, it is
combined with the corresponding code, code constraints, and goal to form a task-code pair.

In implementation, we generate up to 3,000 tasks for each combination of code, code constraints,
and goals. Subsequently, we sample 500 tasks from the pool of all generated tasks for each (T,C,D),
resulting in up to 500 tasks × 3 difficulty levels = 1, 500 tasks for each reference input (T,C). This
process is repeated for all reference inputs in the dataset, resulting in a total of up to 85× 1, 500 =
127, 500 tasks. Finally, we apply the processing steps described in the main paper to generate the
synthetic dataset, resulting in the final dataset, SIM, containing 89, 053 tasks and solution codes.

To run the adapted task synthesis technique, we use a 12-core, 3 GHz Intel Xeon E7-8857 CPU, with
parallelization across 8 cores under a 64-bit Debian operating system.

B.2 QUALITY OF THE DATASETS

The quality of the datasets is crucial for the success of the models trained on them. Therefore, we
provide the more details about the quality of the datasets. We mainly use the following two datasets
for evaluation:

1. REAL dataset (85 samples): This dataset was derived from the visual programming platform
XLogoOnline. The tasks included in this platform were meticulously crafted by experts
and have been used by tens of thousands of students every year (Hromkovic et al., 2017;
Staub, 2021). Given this extensive use and expert involvement, the quality of the tasks in
this dataset is guaranteed.

2. SIM-EVAL dataset (1000 samples): This dataset was synthetically generated. However,
we ensure data quality by implementing the following checks: (i) we have removed any
duplicate task-code pairs; (ii) we have conducted a correctness check on the generated
solution codes using the emulator, and (iii) we have excluded any task-code pairs present in
the REAL dataset from this synthetic dataset. In Figure 12, we show examples of the tasks
in this dataset.

To further demonstrate the quality of our datasets, we conduct a quality annotation for both datasets.
Specifically, we annotate the quality of all 85 samples in the REAL dataset and randomly sample 5%
of tasks from the SIM-EVAL dataset for annotation. The following rubrics are used to evaluate each
(task, code) pair:

1. Visual appeal
• 0: Poor - The visual grid is highly unappealing.
• 0.5: Acceptable - The visual grid is moderately appealing.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

• 1: Excellent - The visual grid is highly appealing.

2. Grid elements utility

• 0: Poor - The distractors are neither useful nor reasonably positioned.
• 0.5: Acceptable - Some distractors are useful, while others lack utility.
• 1: Excellent - Most, if not all, distractors are strategically useful and sensibly placed.

3. Code quality

• 0: Poor - The code is of poor quality, unable to solve the task, or violates code
constraints.

• 0.5: Acceptable - The code can solve the task but contains some unnecessary com-
mands.

• 1: Excellent - The code solves the task, meets code constraints, and has no redundant
commands.

4. Overall quality: Calculated as the minimum score across visual appeal, grid elements utility,
and code quality.

Visual Appeal Grid Elements Utility Code Quality Overall Quality

REAL 1.00 1.00 1.00 1.00
SIM-EVAL 0.97 0.94 0.89 0.84

Figure 11: Quality annotation results for REAL and SIM-EVAL datasets. For REAL, we annotate all
85 samples, while for SIM-EVAL, we randomly sample 5% of the dataset for annotation.

The results in Figure 11 demonstrate that the overall quality of the REAL dataset is excellent. The
SIM-EVAL dataset, with an overall quality score of 0.84, exceeds the acceptable threshold (score =
0.5) and approaches the level of excellence (score = 1.0). Additionally, during the quality annotation,
we do not find any (task, code) pair where the task is unsolvable or the code fails to successfully
solve the task.

C MORE DETAILS OF THE FINE-TUNING AND EVALUATION

Details of fine-tuning Llama family models. For Llama family models, we choose non-instruction-
tuned versions for fine-tuning because the base models will be fine-tuned to generate code, without
requiring instruction-following capabilities. We use LoRA for parameter-efficient fine-tuning (Hu
et al., 2022). To find the best LoRA rank and scaling factor, we experimented with ranks of 8, 16,
32, and 64, using a scaling factor α four times the rank in each case. We found that a rank of 32
and 64 provide the best performance. Consequently, we use a rank of 32 and a scaling factor of
128 for all fine-tuning experiments. Fine-tuning is performed with a batch size of 4 and a learning
rate of 1 × 10−4. All fine-tuning experiments are conducted on an internal cluster using 4 A100
GPUs. Each epoch of fine-tuning for the Llama3-8B and Llama2-7B models takes approximately
3.75 hours. In our experiments, all fine-tuned Llama models are trained for 8 epochs, as we observed
that the validation dataset loss stabilizes around epoch 8. We train all fine-tuned Llama models using
5 different random seeds.

Details of fine-tuning Llava family model. We perform standard supervised fine-tuning to Llava1.5-
13B (Liu et al., 2023a). To do this, we follow the default fine-tuning setup and code provided by the
authors.4 Specifically, we use LoRA with a rank of 128 and a scaling factor of 256 for fine-tuning
Llava1.5-13B. During fine-tuning, we use a batch size of 16, a learning rate of 2 × 10−4, and a
maximum sequence length of 2048. We fine-tune the Llava model for 3 epochs on the 87k training
dataset using 5 different random seeds, utilizing 4 A100 GPUs.

Details of emulator-driven fine-tuning. For emulator-driven fine-tuning, we use the same hyper-
parameters and setup as the standard fine-tuning, with the exception of resampling every 3 epochs.
Specifically, we resample the training dataset based on the emulator’s evaluation results every 3

4https://github.com/haotian-liu/LLaVA

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Collect all red shapes with-
out standing on the green.

def Run():
move_forward()
move_forward()
move_back()
turn_left()
move_forward()
move_forward()
turn_left()
move_forward()

Collect exactly 5 strawber-
ries.

def Run():
turn_right()
move_forward()
turn_left()
move_forward()
turn_left()
move_forward()
turn_right()
move_forward()
turn_right()
move_forward()

Draw the picture in yellow.
Use at most 8 commands.

def Run():
setpc("yellow")
for i in range(4):
move_forward()
turn_left()
move_forward()
turn_left()
move_back()
turn_left()

Draw the picture. Use at
most 8 commands.

def Run():
for i in range(2):
move_back()

turn_right()
for i in range(3):
move_forward()

turn_right()
for i in range(2):
move_forward()

Find the strawberry. Use
at most 6 commands.

def Run():
move_forward()
turn_right()
for i in range(4):
move_forward()

turn_right()
move_forward()

Figure 12: Examples of synthetic tasks and their corresponding solution codes in SIM-EVAL. Note
that while the synthesized solution codes are correct, they may not use the minimum number of
commands.

epochs. To save time and resources, we start from the checkpoint of the fine-tuned models without
resampling at epoch 3. We then reuse this checkpoint to continue fine-tuning for 5 additional epochs
using emulator-driven resampling, resulting in a total of 8 epochs. Emulator-driven resampling re-
quires calculating a weight for each training sample, which involves inference over the entire training
dataset. For inference, we use the vLLM inference engine (Kwon et al., 2023) with max_num_seqs
of 8, batch size of 2, and temperature of 0. In this setting, a single iteration of inference and resam-
pling on the 87k training dataset takes approximately 8 hours. After inference, we use the emulator
to evaluate the correctness of the model’s predicted code. Based on this evaluation, we calculate the
weight for each training sample using a value of β = 1.

Details of evaluation. To evaluate GPT family models, we use the OpenAI API with a temperature
of 0. For Llama3-8B, Llama2-7B, and fine-tuned models, we use the vLLM (Kwon et al., 2023)
inference engine with 2 A100 GPUs, using a temperature of 0 and max_num_seqs of 2. We
find that a smaller max_num_seqs value slows down inference speed but improves performance.
Therefore, we choose a max_num_seqs value of 2 to balance performance and speed for inference.
After inference, we use the emulator to evaluate the models’ success rates over the evaluation datasets.

Details of the emulator. We have implemented an emulator that can be used to run the code for
a given task and provide detailed execution results. The emulator operates in the following way:
given a (task, code) pair in our domain, the emulator runs the code for the task and then returns the
execution result. During execution, the emulator checks the code format, whether the code execution
crashes, whether the code constraints are satisfied, and whether the code can achieve the task’s
goal. Note that the code constraints and the task’s goal are specified in JSON format for precise
and unambiguous checking. When creating prompts for models to generate the code, these code
constraints and goals are translated into natural language using a fixed translation template. For
example, a task’s code constraints and goal might be translated as, “Find the strawberry using at
most 8 commands.” After all above checks are performed, the emulator provides the execution
result, which is either “success” or an error message indicating the specific reason for the failure. For
example, when code execution is successful for a task, the execution result is “success.” If there is an
error, such as “hitting the wall,” the emulator generates the appropriate error type and message. We
use the emulator to evaluate the success rates of the models over the evaluation datasets and also use
it to implement our emulator-driven fine-tuning.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Vanilla 3-shot 3-shot + CoT

GPT-4 12.94 10.59 18.82
GPT-4V 20 14.12 15.29

Figure 13: Success rates (%) of GPT-4 and GPT-4V with different prompting strategies on the
REAL dataset. 3-shot prompting is not notably effective, but when combined with CoT, it leads to
performance improvements. However, for GPT-4V, the vanilla prompt is the most effective.

Success Rates (%)

NL ASCII

Base models
GPT-4 12.94 5.88
Llama3-70B 2.35 1.18

Fine-tuned models
Llama3-8B-Uni 54.12± 1.78 53.18± 1.01

(a) Performance of base and fine-tuned models
with NL and ASCII prompts.

0 1 2 3 4 5 6 7 8
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Su
cc

es
s R

at
e

Llama3-8B-Uni (NL)
Llama3-8B-Uni (ASCII)

(b) Performance of Llama3-8B-Uni across epochs
with NL and ASCII prompts.

Figure 14: Influence of task representations on model performance. We compare the performance of
base models and fine-tuned models using natural language (NL) and ASCII prompts, respectively.
(a) shows the success rates of base and fine-tuned models. (b) shows the performance of fine-tuned
models across different epochs. Natural language prompts lead to better performance in base models.
However, the fine-tuned Llama3-8B-Uni performs similarly with both NL and ASCII prompts.

D ADDITIONAL EXPERIMENTS AND RESULTS

In this section, we present additional experiments and results. First, we investigate the influence
of different prompting strategies on model performance. Next, we investigate task representations,
comparing natural language and ASCII-based prompts. Then, we analyze the performance of fine-
tuned Llama models across different epochs. Finally, we present a case study on output code analysis
for perturbed tasks, providing further insights into failure analysis.

D.1 INFLUENCE OF THE PROMPTING STRATEGIES

Carefully designed prompts have been shown to improve the performance of large models (Wei et al.,
2022; Brown et al., 2020). We conduct experiments on different prompting strategies to investigate
their effectiveness in our benchmark. We consider the following prompting strategies: (i) Vanilla
is the prompt without any additional examples or chain-of-thoughts; (ii) 3-shot is the prompt with
3-shot examples (Brown et al., 2020). (iii) 3-shot + CoT is the prompt with the 3-shot examples
and a step-by-step chain-of-thought (CoT) for each example (Wei et al., 2022). Note that the 3-shot
examples are manually designed to ensure they cover most skills, including math, logic, draw, basic
actions, variables, loops, and code constraints. These same 3-shot examples are used to prompt all
tasks for 3-shot and 3-shot + CoT prompting.

The results are shown in Figure 13. We observe that 3-shot prompting by itself is not notably effective.
However, when combined with CoT, it leads to performance improvements, though these gains are
limited. We speculate that this is due to the nature of our visual programming tasks, which require
long-term path planning, an understanding of spatial relationships, and accurate prediction of the
consequences of actions. These elements are typically absent from the training data, making it
difficult for the model to leverage in-context learning to solve unfamiliar visual programming tasks.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6 7 8
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Su
cc

es
s R

at
e

Llama3-8B-Emu
Llama2-7B-Emu
Llama3-8B-Uni
Llama2-7B-Uni

(a) REAL dataset.

0 1 2 3 4 5 6 7 8
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Su
cc

es
s R

at
e

Llama3-8B-Emu
Llama2-7B-Emu
Llama3-8B-Uni
Llama2-7B-Uni

(b) SIM-EVAL dataset.

Figure 15: Fine-tuning performance across different epochs on two evaluation datasets. (a) shows the
performance of fine-tuned models across different epochs on the evaluation dataset REAL. (b) shows
the fine-tuning performance across different epochs on the synthetic evaluation dataset SIM-EVAL.

D.2 INFLUENCE OF TASK REPRESENTATIONS

In this section, we investigate the influence of natural language and ASCII representations on model
performance.

For visual programming tasks, the 2-dimensional grid can be represented in various ways, including
natural language descriptions, ASCII-based representations, and images. For the ASCII representa-
tion, we developed a template to represent the task’s visual grid using ASCII characters. These ASCII
characters are then provided to the model as a replacement for the natural language descriptions of
the visual grid, both for fine-tuning and evaluation. An example of an ASCII-based prompt is shown
in Figure 19.

The evaluation results are shown in Figure 14. Our results indicate that GPT-4 and Llama3-70B
perform better with natural language (NL) representations. This might be due to their predominant
training on natural language data. However, the fine-tuned Llama3-8B-Uni model performs similarly
with both NL and ASCII prompts, with final success rates of 54.12% and 53.18%, respectively.

In Figure 14b, we show Llama3-8B-Uni’s performance across different epochs with NL and ASCII
prompts. We find that the performance of Llama3-8B-Uni with NL and ASCII prompts converges at
a similar rate, suggesting that fine-tuning helps the model adapt to ASCII-based task representations,
making task representations less critical for fine-tuning models in our visual programming domain.

D.3 FINE-TUNING PERFORMANCE ACROSS DIFFERENT EPOCHS.

Figure 15a illustrates the performance of fine-tuned models across different epochs. For the emulator-
driven fine-tuning (Emu), we adjust the resampling interval to every three epochs, specifically at
epochs 3 and 6. At epoch 3, we reuse the checkpoint from the standard fine-tuning (Uni) to save
time and resources. As a result, the performance of the emulator-driven fine-tuning (Emu) matches
that of the corresponding standard fine-tuning (Uni) up until epoch 3. Then, an emulator-driven
resampling is performed at epoch 3, leading to further performance improvements compared to
models without resampling. Notably, at the end of training, Llama2-7B-Emu achieves performance
close to that of Llama3-8B-Uni, despite the latter being fine-tuned on a more advanced base model.
This demonstrates the effectiveness of the curriculum designed by emulator-driven resampling in
enhancing the performance of standard fine-tuning.

In Figure 15b, we show the fine-tuning performance across different epochs on the synthetic evaluation
dataset SIM-EVAL. This synthetic evaluation dataset exhibits the same distribution as the training
dataset due to our splitting method. Emulator-driven resampling is performed at epochs 3 and 6 for
both Llama3-8B-Emu and Llama2-7B-Emu. We find that standard fine-tuning without resampling
leads to a smooth increase in performance across epochs, as seen in the Llama3-8B-Uni and Llama2-
7B-Uni curves. In contrast, emulator-driven fine-tuning with resampling shows slight performance
fluctuations, particularly in the epochs immediately following resampling (i.e., epochs 4 and 7).
The fluctuations in emulator-driven fine-tuning might be due to the resampling process altering the

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

HumanEval HumanEval+ MBPP MBPP+

Llama3-8B (Base) 36.6% 31.1% 62.4% 52.6%
Llama3-8B-Uni (Fine-tuned) 33.5% 26.8% 57.9% 46.8%

∆ (Fine-tuned - Base) −3.1% −4.3% −4.5% −5.8%

Figure 16: Pass@1 performance of Llama3-8B (Base) and the Llama3-8B-Uni (fine-tuned) on
other program synthesis benchmarks, including HumanEval, HumanEval+, MBPP, and MBPP+.
Fine-tuning on the SIM dataset leads to a performance drop of 3− 6% on these program synthesis
benchmarks.

distribution of the training data, leading to a temporary drop in performance. However, in later epochs
after resampling (e.g., epoch 8), the performance of the resampling models outperforms that of the
standard fine-tuning models, indicating the effectiveness of emulator-driven fine-tuning in improving
fine-tuning performance.

D.4 IMPACT OF DOMAIN-SPECIFIC FINE-TUNING ON OTHER BENCHMARKS

In Section 5.4, we have shown that fine-tuning on the domain dataset SIM leads to performance
improvements on out-of-distribution tasks within the same domain, compared to the base model
without fine-tuning. However, it remains uncertain whether fine-tuning on our domain dataset would
also enhance performance on tasks from different domains, such as Python program synthesis tasks.

To investigate this, we evaluate our fine-tuned Llama3-8B-Uni model on other Python program
synthesis benchmarks, including HumanEval (Chen et al., 2021), HumanEval+ (Liu et al., 2023b),
MBPP (Austin et al., 2021), and MBPP+ (Liu et al., 2023b). Different from our benchmarks, these
benchmarks focus on general Python program synthesis tasks from natural language or docstrings,
without visual elements present in the benchmark tasks.

The results are presented in Figure 16. Our findings indicate that fine-tuning on our domain dataset
SIM results in a slight performance drop (3− 6%) on these program synthesis benchmark tasks. We
hypothesize that this is due to the SIM dataset’s focus on visual programming tasks, which emphasize
visual understanding, spatial reasoning, and planning—skills that are not directly applicable to other
Python program synthesis tasks. Consequently, fine-tuning on our domain dataset does not provide
additional knowledge for solving other benchmark tasks. Instead, the fine-tuning process may cause
the model to forget some knowledge already acquired during the pre-training stage, leading to the
performance drop in other benchmark tasks.

D.5 CASE STUDY: OUTPUT CODE ANALYSIS ON PERTURBED TASKS

In the main paper, we presented a failure analysis by perturbing tasks and calculating the success
rate. To illustrate the failure cases, we provide examples of output code from the evaluated models on
these perturbed tasks, including GPT-4V, Llama3-70B, and Llama3-8B-Uni.

The output code is displayed in Figure 17. In the provided examples, we observe that GPT-4V has
difficulty handling grid constraints and spatial reasoning. For example, in T and TA, GPT-4V attempts
to reach the strawberry by ignoring the walls. However, once the walls are removed (TB), GPT-4V is
able to successfully solve the task. Interestingly, GPT-4V fails to solve TA,B, even though this task is
conceptually simpler than TB due to the absence of code constraints. Upon examining the code and the
accompanying comments from GPT-4V, we found that it miscalculates the strawberry’s coordinates,
indicating a struggle with spatial reasoning. Additionally, we observed that moving the turtle closer
to the strawberry consistently improves GPT-4V’s performance, suggesting long-path planning and
spatial reasoning are challenging for GPT-4V. However, for Llama3-70B and Llama3-8B-Uni, we
observe that neither model successfully solves any of the perturbed tasks.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

E PROMPTS FOR THE XLOGOONLINE-MINI DOMAIN

In this section, we present three types of prompts for program synthesis in the XLogoOnline-Mini
domain. Figures 18 and 19 show examples of the prompts using natural language and ASCII
representation, respectively. Figure 20 shows the prompt for the few-shot + CoT prompting.

Note that after the title “#### Available Python Functions” in prompts, we provide an explanation and
two examples of the code format. This is intended for base models, such as GPT-family and Llama-
family base models, to ensure they follow the desired code format. However, fine-tuning models
does not need this code format in the prompt, as models are trained with formatted code directly.
Therefore, we omit the code format and examples from the prompts when fine-tuning models.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Task GPT-4V Llama3-70B Llama3-8B-Uni

Find the strawberry. Use
at most 8 commands.

T

def run():
Turtle faces east
turn_right()

Moves to (1,3)
move_forward()

Moves to (2,3)
move_forward()

Moves to (3,3) where the strawberry is located
move_forward()

def run():
move_forward()
turn_right()
move_forward()
move_forward()
turn_left()
move_forward()
move_forward()
move_forward()

def run():
move_forward()
move_forward()
turn_right()
for i in range(3):
move_forward()

turn_right()
for i in range(3):
move_forward()

Find the strawberry.

TA

def run():
Start at (0,3) facing north
First, turn right to face east
turn_right()

Move forward three times to reach (3,3)
for i in range(3):
move_forward()

def run():
for i in range(3):
move_forward()
turn_right()

move_forward()
turn_left()
move_forward()
turn_right()
move_forward()
turn_left()
for i in range(2):
move_forward()

def run():
move_forward()
turn_right()
move_forward()
turn_left()
move_forward()
move_forward()

Find the strawberry. Use
at most 8 commands.

TB

def run():
turn_right() # Turtle faces east
for i in range(3):
move_forward() # Moves from (0,3) to (3,3)

def run():
for i in range(3):
move_backward()

turn_right()
move_forward()
turn_left()
move_forward()
move_forward()
turn_right()
move_forward()

def run():
move_forward()
turn_right()
for i in range(3):
move_forward()

turn_right()
move_backward()
for i in range(3):
move_forward()

Find the strawberry. Use
at most 8 commands.

TC

def run():
move_forward() # Moves from (3,1) to (3,2)
move_forward() # Moves from (3,2) to (3,3)
↪→ where the strawberry is located
turn_right() # Turns to face west
turn_right() # Turns to face north
turn_right() # Turns to face east
turn_right() # Turns to face south again
turn_right() # Turns to face west
turn_right() # Turns to face north

def run():
turn_left()
move_forward()
turn_right()
move_forward()
move_forward()
turn_left()
move_forward()
move_forward()

def run():
move_forward()
turn_right()
for i in range(3):
move_forward()

turn_right()
move_forward()
move_forward()

Find the strawberry.

TA,B

def run():
Turn right to face east
turn_right()

Move forward three times to reach column 3
for i in range(3):
move_forward()

Turn right to face south
turn_right()

Move forward to reach the strawberry at (3,3)
move_forward()

def run():
for i in range(3):
move_forward()

turn_right()
move_forward()
turn_left()
for i in range(3):
move_forward()

def run():
move_forward()
turn_right()
move_forward()
turn_right()
move_forward()
move_forward()

Find the strawberry. Use
at most 8 commands.

TB,C

def run():
Moves from (3,1) to (3,2)
move_forward()

Moves from (3,2) to (3,3)
↪→ where the strawberry is located
move_forward()

def run():
turn_left()
turn_left()
for i in range(2):
move_forward()

turn_left()
move_forward()
turn_right()
move_forward()

def run():
move_forward()
turn_right()
move_forward()
for i in range(2):
move_forward()
turn_right()

turn_left()
move_forward()

Find the strawberry.

TA,C

def run():
The turtle starts at (3,1) facing south.
First, move forward to (3,2).
move_forward()

Then, move forward to (3,3)
where the strawberry is located.
move_forward()

def run():
turn_left()
move_forward()
turn_right()
move_forward()
turn_left()
move_forward()
turn_right()
move_forward()
turn_left()
move_forward()
turn_right()
... (repeat outputs)

def run():
move_forward()
turn_right()
move_forward()
turn_right()
move_forward()
move_forward()
turn_left()
move_forward()
turn_right()
move_forward()

Find the strawberry.

TA,B,C

def run():
The turtle starts at (3,1) facing south.
Move forward to reach (3,2).
move_forward()

Move forward again to reach (3,3)
↪→ where the strawberry is located.
move_forward()

def run():
turn_left()
turn_left()
for i in range(2):
move_forward()

turn_left()
for i in range(3):
move_forward()

turn_right()
move_forward()

def run():
turn_right()
move_forward()
turn_right()
move_forward()
turn_right()
move_forward()
move_forward()
turn_left()
move_forward()
move_forward()

Figure 17: Output codes generated by GPT-4V, Llama3-70B, and Llama3-8B-Uni for various
perturbations applied to a task T. The perturbations include removing code constraints (TA), removing
grid constraints (TB), simplifying spatial relationships (TC), and combinations of these perturbations
(TA,B, TB,C, TA,C, and TA,B,C). Note that only the code is shown due to space limitations. The red
line in the output code marks the point where the code first triggers an execution error or fails to
successfully solve the task. GPT-4V successfully solves 5 out of 8 perturbed tasks, but Llama3-70B
and fine-tuned Llama3-8B-Uni fail to solve any of the perturbed tasks.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Natural Language Prompt for Code Generation in XLogoOnline-Mini
You are presented with a visual programming task involving a goal, a grid, a turtle, various items (or lines). You need to write Python code that enables the turtle to
accomplish the goal within the grid.

Grid and Turtle
- The task has a `m x n` grid. The coordinates of the grid cells are `(x, y)`, where `x` is the column number and `y` is the row number. The top-left cell has coordinates
`(0, 0)`. - The turtle starts at a specific grid cell and faces one of four directions: North, East, South, or West.

Items
Each item in the grid is defined by three attributes:
- `count`: The number of identical items in that grid cell.
- `color`: The item’s color. Options include red, green, blue, yellow, black, white, orange, purple, and pink.
- `name`: The type of the item, such as circle, rectangle, triangle, cross, strawberry, or lemon.

Lines
Sometimes, the grid doesn’t contain any items but has lines with colors. You need to draw lines of the specified color to solve the task.

Grid Cell Properties
- A grid cell may be `accessible` or `forbidden`. The turtle can move to an accessible cell but not into a forbidden cell. If the turtle tries to move into a forbidden cell, it
will crash and fail to solve the task.
- Grid cells can have walls on their edges (top, bottom, left, and right). The turtle cannot move through walls, otherwise it will crash and fail to solve the task.

Available Python Functions
To solve the task, you can use the following Python functions:
- `move_forward()`: This function moves the turtle forward in the direction it is facing by one grid cell. For example, if the turtle is at the position (x, y) and facing north,
after executing move_forward(), the turtle will be at the position (x, y-1).
- `move_backward()`: This function moves the turtle backward in the direction it is facing by one grid cell. For example, if the turtle is at the position (x, y) and facing
west, after executing `move_backward()`, the turtle will be at the position (x+1, y).
- `turn_left()`: This function makes the turtle turn left in the direction it is facing - by 90 degrees. For example, if the turtle is facing north, after executing `turn_left()`,
the turtle will be facing west.
- `turn_right()`: This function makes the turtle turn right in the direction it is facing - by 90 degrees. For example, if the turtle is facing south, after executing `turn_right()`,
the turtle will be facing west.
- `setpc(color)`: This function sets the pen color to the specified color. The available colors are: red, green, blue, yellow, black, white. The default pen color is black. The
trajectory of the turtle is drawn with the pen color.
- `for` loop: This loop is used to repeat a set of commands a specified number of times. For example, `for i in range(4):` will repeat the commands inside the loop 4 times.
Your code should follow the format:
```python
def run():

# Your solution code goes here
pass

```
Here are some examples of the code:
Example 1:
```python
def run():

move_forward()
for i in range(4):

move_forward()
turn_left()

```
Example 2:
```python
def run():

move_forward()
setpc(’red’)
for i in range(3):

move_forward()
turn_right()
move_backward()

```

Now, write a CORRECT Python code that successfully solves the following task.
Task:
A 3x3 grid. The turtle starts at (1,1) facing north.
Accessible cells: (0,0), (1,0), (2,0), (0,1), (1,1), (2,1), (0,2), (1,2), (2,2).
Items in the grid:
- 1 red strawberry at (1,0).

Goal:
Find the strawberry.

CORRECT code:

Figure 18: An example of natural language prompt in the XLogoOnline-Mini domain.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

ASCII-based Prompt for Program Synthesis in XLogoOnline-Mini
You are presented with a visual programming task involving a goal, a grid, a turtle, various items (or lines). You need to write Python code that enables the turtle to
accomplish the goal within the grid.

Grid and Turtle
A task’s grid contain a turtle and some items. The turtle can face one of four directions: North (`ˆ`), South (`v`), East (`>`), or West (`<`). An item has three attributes:
`count`, `color`, and `name`. The `count` indicates the number of identical items in that grid cell. The `color` specifies the item’s color, and the `name` describes the
item’s type. Here are the possible options:
- Colors: Red (`R`), Green (`G`), Blue (`B`), Yellow (`Y`), Black (`K`), White (`W`), Orange (`O`), Purple (`U`), Pink (`P`)
- Names: Circle (`o`), Rectangle (`□`), Triangle (`△`) ,Cross (`X`), Strawberry (`S`), Lemon (`L`)
- Counts: `1`, `2`, `3`, `4`
- For example, `2RS` means two red strawberries.

We use the following symbols to describe a grid:
- `—` represents the top or bottom edge of a grid cell.
- `|` represents the left or right edge of a grid cell.
- `===` represents an upper or lower wall of a cell.
- `||` represents a left or right wall of a cell.
- `+` represents the corner of a grid cell.
- `X` represents a forbidden cell that cannot be accessed.

Grid Cell Properties
- A grid cell may be `accessible` or `forbidden`. The turtle can move to an accessible cell but not into a forbidden cell. If the turtle tries to move into a forbidden cell, it
will crash and fail to solve the task.
- Grid cells can have walls on their edges (top, bottom, left, and right). The turtle cannot move through walls, otherwise it will crash and fail to solve the task.

Available Python Functions
To solve the task, you can use the following Python functions:
- `move_forward()`: This function moves the turtle forward in the direction it is facing by one grid cell. For example, if the turtle is at the position (x, y) and facing north,
after executing move_forward(), the turtle will be at the position (x, y-1).
- `move_backward()`: This function moves the turtle backward in the direction it is facing by one grid cell. For example, if the turtle is at the position (x, y) and facing
west, after executing `move_backward()`, the turtle will be at the position (x+1, y).
- `turn_left()`: This function makes the turtle turn left in the direction it is facing - by 90 degrees. For example, if the turtle is facing north, after executing `turn_left()`,
the turtle will be facing west.
- `turn_right()`: This function makes the turtle turn right in the direction it is facing - by 90 degrees. For example, if the turtle is facing south, after executing `turn_right()`,
the turtle will be facing west.
- `setpc(color)`: This function sets the pen color to the specified color. The available colors are: red, green, blue, yellow, black, white. The default pen color is black. The
trajectory of the turtle is drawn with the pen color.
- `for` loop: This loop is used to repeat a set of commands a specified number of times. For example, `for i in range(4):` will repeat the commands inside the loop 4 times.
Your code should follow the format:
```python
def run():

# Your solution code goes here
pass

```
Here are some examples of the code:
Example 1:
```python
def run():

move_forward()
for i in range(4):

move_forward()
turn_left()

```
Example 2:
```python
def run():

move_forward()
setpc(’red’)
for i in range(3):

move_forward()
turn_right()
move_backward()

```

Now, write a CORRECT Python code that successfully solves the following task:
Task:

+---+---+---+
| |1RS| |
+---+---+---+
| | ^ | |
+---+---+---+
| | | |
+---+---+---+

Goal:
Find the strawberry.
CORRECT Code:

Figure 19: An example of ASCII-based prompt in the XLogoOnline-Mini domain.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Few-shot + CoT Prompt for Code Generation in XLogoOnline-Mini
You are presented with a visual programming task involving a goal, a grid, a turtle, various items (or lines). You need to write Python code that enables the turtle to
accomplish the goal within the grid.

Grid and Turtle
- The task has a `m x n` grid. The coordinates of the grid cells are `(x, y)`, where `x` is the column number and `y` is the row number. The top-left cell has coordinates
`(0, 0)`. - The turtle starts at a specific grid cell and faces one of four directions: North, East, South, or West.

Items
Each item in the grid is defined by three attributes:
- `count`: The number of identical items in that grid cell.
- `color`: The item’s color. Options include red, green, blue, yellow, black, white, orange, purple, and pink.
- `name`: The type of the item, such as circle, rectangle, triangle, cross, strawberry, or lemon.

Lines
Sometimes, the grid doesn’t contain any items but has lines with colors. You need to draw lines of the specified color to solve the task.

Grid Cell Properties
- A grid cell may be `accessible` or `forbidden`. The turtle can move to an accessible cell but not into a forbidden cell. If the turtle tries to move into a forbidden cell, it
will crash and fail to solve the task.
- Grid cells can have walls on their edges (top, bottom, left, and right). The turtle cannot move through walls, otherwise it will crash and fail to solve the task.

Available Python Functions
To solve the task, you can use the following Python functions:
- `move_forward()`: This function moves the turtle forward in the direction it is facing by one grid cell. For example, if the turtle is at the position (x, y) and facing north,
after executing move_forward(), the turtle will be at the position (x, y-1).
- `move_backward()`: This function moves the turtle backward in the direction it is facing by one grid cell. For example, if the turtle is at the position (x, y) and facing
west, after executing `move_backward()`, the turtle will be at the position (x+1, y).
- `turn_left()`: This function makes the turtle turn left in the direction it is facing - by 90 degrees. For example, if the turtle is facing north, after executing `turn_left()`,
the turtle will be facing west.
- `turn_right()`: This function makes the turtle turn right in the direction it is facing - by 90 degrees. For example, if the turtle is facing south, after executing `turn_right()`,
the turtle will be facing west.
- `setpc(color)`: This function sets the pen color to the specified color. The available colors are: red, green, blue, yellow, black, white. The default pen color is black. The
trajectory of the turtle is drawn with the pen color.
- `for` loop: This loop is used to repeat a set of commands a specified number of times. For example, `for i in range(4):` will repeat the commands inside the loop 4 times.

Your code should follow the format:
```python
def run():

# Your solution code goes here
pass

```

Here are some examples of the the tasks and their corresponding solution codes:
{few_shot_example_1}
{few_shot_example_2}
{few_shot_example_3}

Now, write a CORRECT Python code that successfully solves the following task.
Task:
A 3x3 grid. The turtle starts at (1,1) facing north.
Accessible cells: (0,0), (1,0), (2,0), (0,1), (1,1), (2,1), (0,2), (1,2), (2,2).
Items in the grid:
- 1 red strawberry at (1,0).

Goal:
Find the strawberry.

CORRECT code:

Figure 20: An example of the few-shot + CoT prompt in the XLogoOnline-Mini domain. This prompt
has several placeholders to include details for few-shot examples.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

{few_shot_example_1}
Task 1: A 4x4 grid. The turtle starts at (3,3) facing south.
Accessible cells: (3,0), (3,1), (3,2), (0,3), (1,3), (2,3), (3,3).
Forbidden cells: (0,0), (1,0), (2,0), (0,1), (1,1), (2,1), (0,2), (1,2), (2,2).
Lines in the grid:
- A red line from (3,0) to (3,1).
- A red line from (3,1) to (3,2).
- A red line from (3,2) to (3,3).
- A red line from (0,3) to (1,3).
- A red line from (1,3) to (2,3).
- A red line from (2,3) to (3,3).

Goal 1:
Draw the picture in red. Use at most 8 commands.

Code 1:
Explanation:
1. Starting Position and Initial Setup:
- The turtle starts at `(3, 3)`, facing south. To achieve the goal of drawing the picture in red, we first need to set the pen color to red using the `setpc(’red’)` command.

2. Plan the path:
- To draw the pattern, the path is `(3,3) -> (3,0) -> (3,3) -> (0,3)`.

3. Compiling the Path into Commands:
- The turtle starts at `(3, 3)`, facing south. To draw the first red line from `(3, 3)` to `(3, 0)`, we need to first set the pen color to red and then move back 3 times to reach
from `(3, 3)` to `(3, 0)`.
- Now, the turtle is at `(3, 0)` and still facing south. To move back to `(3, 3)`, we move forward 3 times in the same direction (south).
- At `(3, 3)` and facing south, the turtle needs to turn right to face west.
- Now, the turtle is at `(3, 3)` and facing west. Move forward 3 times to reach from `(3, 3)` to `(0, 3)` facing west.
- Now the turtle has drawn the picture in red.

Putting it all together and notice that the solution code can use at most 8 commands. Here is the solution code:

```python
def run():

setpc(’red’)
for i in range(3):

move_backward()
for i in range(3):

move_forward()
turn_right()
for i in range(3):

move_forward()
```

Figure 21: The detail of the first few-shot + CoT example {few_shot_example_1}.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

{few_shot_example_2}
Task 2:
A 3x3 grid. The turtle starts at (1,2) facing south.

Accessible cells: (0,0), (1,0), (2,0), (0,1), (1,1), (2,1), (0,2), (1,2), (2,2).
(1,0) has a wall at the bottom edge.
(2,0) has a wall at the bottom edge.
(1,1) has a wall at the top edge.
(2,1) has a wall at the top edge.

Items in the grid:
- 4 red strawberries at (1,0).
- 1 red strawberry at (2,0).
- 2 red strawberries at (2,1).
- 1 red strawberry at (2,2).

Goal 2:
Collect exactly 5 strawberries.

Code 2:
Explanation:
1. Starting Position and Initial Setup:
- The turtle starts at `(1, 2)`, facing south.
- The goal is to collect exactly 5 strawberries.
- There are 4 strawberries at `(1, 0)` and 1 strawberry at `(2, 0)`. By visiting these two cells, we can collect exactly 5 strawberries. We need a path to visit both `(1, 0)`
and `(2, 0)` while considering walls that block movement between cells `(1, 0)` & `(1, 1)` and `(2, 0)` & `(2, 1)`.

2. Planning the Path:
- An ideal path to avoid the walls and collect strawberries is: `(1, 2) -> (1, 1) -> (0, 1) -> (0, 0) -> (2, 0)`.
- This path efficiently collects exactly 5 strawberries.

3. Compiling the Path into Commands:
- The turtle starts at `(1, 2)` facing south.
- To move from `(1, 2)` to `(1, 1)`, it needs to move backward. Now the turtle is at `(1, 1)` facing south.
- To move from `(1, 1)` to `(0, 1)`, it needs to turn right and move forward. Now it is at `(0, 1)` facing west.
- To move from `(0, 1)` to `(0, 0)`, it needs to turn right to face north, then move forward. Now it is at `(0, 0)` facing north.
- To move from `(0, 0)` to `(2, 0)`, it needs to turn right to face east, and finally, move forward twice to go from `(0, 0)` to `(2, 0)`.
- Now the turtle has collected exactly 5 strawberries.

Putting it all together. The solution code is:

```python
def run():

move_backward()
turn_right()
move_forward()
turn_right()
move_forward()
turn_right()
move_forward()
move_forward()

```

Figure 22: The detail of the second few-shot + CoT example {few_shot_example_2}.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

{few_shot_example_3}
Task 3:
A 3x3 grid. The turtle starts at (2,2) facing south.
Accessible cells: (0,0), (1,0), (2,0), (0,1), (1,1), (2,1), (0,2), (1,2), (2,2).
Items in the grid:
- 1 blue triangle at (0,0).
- 1 red circle at (1,0).
- 1 green circle at (2,0).
- 1 blue circle at (0,1).
- 1 blue rectangle at (1,1).
- 1 red triangle at (2,1).
- 1 red cross at (0,2).
- 1 green rectangle at (1,2).

Goal 3:
Find the blue triangle without standing on a red. Use at most 3 ’backward’.

Code 3:
Explanation:
1. Starting Position and Initial Setup:
- The turtle starts at `(2, 2)`, facing south.
- The goal is to find the blue triangle located at `(0, 0)` without standing on any red items.
- There are several items in the grid: red circle at `(1, 0)`, red triangle at `(2, 1)`, and red cross at `(0, 2)`.
- We need to avoid these red items and reach `(0, 0)` using at most 3 backward movements.

2. Planning the Path:
- Since we have to avoid red items and should use at most 3 backward movements, we need to plan an efficient path.
- A suitable path that avoids red items and stays within the permitted movements is: `(2, 2) -> (1, 2) -> (1, 1) -> (0, 1) -> (0, 0)`.

3. Compiling the Path into Commands:
- The turtle starts at `(2, 2)` facing south. First, turn left to face east.
- Move backward to reach `(1, 2)` facing east.
- Turn left again to face north.
- Move forward to reach `(1, 1)` facing north.
- Turn right to face east.
- Move backward to reach `(0, 1)` facing east.
- Turn right to face south.
- Move backward to reach `(0, 0)` facing south.

Putting it all together. The solution code is:

```python
def run():
turn_left()
move_backward()
turn_left()
move_forward()
turn_right()
move_backward()
turn_right()
move_backward()
```

Figure 23: The detail of the third few-shot + CoT example {few_shot_example_3}.

28

	Introduction
	Related Work
	Background and Synthesis Objective
	Background on XLogoOnline-Mini Programming
	Program Synthesis Objective

	-1Methodology for Synthetic Dataset Generation and Fine-tuning
	Synthetic Dataset Generation
	Methodology for Fine-tuning

	Experimental Evaluations
	Experimental Setup
	Main Results
	Failure analysis
	Additional Results and Analysis

	Concluding Discussions
	Table of Contents
	More Details About the Datasets
	Details of the Synthetic Dataset Generation
	Quality of the Datasets

	More Details of the Fine-tuning and Evaluation
	Additional Experiments and Results
	Influence of the Prompting Strategies
	Influence of Task Representations
	Fine-tuning Performance Across Different Epochs.
	Impact of Domain-Specific Fine-Tuning on Other Benchmarks
	Case Study: Output Code Analysis on Perturbed Tasks

	Prompts for the XLogoOnline-Mini Domain

